Glandular secreting trichomes (GSTs) synthesize and secrete large quantities of secondary metabolites, some of which have well-established commercial value. An example is the anti-malarial compound artemisinin, which is synthesized in the GSTs of Artemisia annua. Accordingly, there is considerable interest in understanding the processes that regulate GST density as a strategy to increase artemisinin production. In this study, we identified a GST-specific WRKY transcription factor from A. annua, AaGSW2, which is positively regulated by the direct binding of the homeodomain proteins AaHD1 and AaHD8 to the L1-box of the AaGSW2 promoter. Overexpression of AaGSW2 in A. annua significantly increased GST density, while AaGSW2 knockdown lines showed impaired GST initiation. Ectopic expression of AaGSW2 homologs from two mint cultivars, Mentha spicata and Mentha haplocalyx, in A. annua also induced GST formation. These results reveal a molecular mechanism involving homeodomain and WRKY proteins that controls glandular trichome initiation, at least part of which is shared by A. annua and mint.
Keywords: Artemisia annua; AaGSW2; AaHD1; AaHD8; glandular trichome; mint; regulatory network; transcription factor.
© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: [email protected].