Deafness mutation D572N of TMC1 destabilizes TMC1 expression by disrupting LHFPL5 binding

Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29894-29903. doi: 10.1073/pnas.2011147117. Epub 2020 Nov 9.

Abstract

Transmembrane channel-like protein 1 (TMC1) and lipoma HMGIC fusion partner-like 5 (LHFPL5) are recognized as two critical components of the mechanotransduction complex in inner-ear hair cells. However, the physical and functional interactions of TMC1 and LHFPL5 remain largely unexplored. We examined the interaction between TMC1 and LHFPL5 by using multiple approaches, including our recently developed ultrasensitive microbead-based single-molecule pulldown (SiMPull) assay. We demonstrate that LHFPL5 physically interacts with and stabilizes TMC1 in both heterologous expression systems and in the soma and hair bundle of hair cells. Moreover, the semidominant deafness mutation D572N in human TMC1 (D569N in mouse TMC1) severely disrupted LHFPL5 binding and destabilized TMC1 expression. Thus, our findings reveal previously unrecognized physical and functional interactions of TMC1 and LHFPL5 and provide insights into the molecular mechanism by which the D572N mutation causes deafness. Notably, these findings identify a missing link in the currently known physical organization of the mechanotransduction macromolecular complex. Furthermore, this study has demonstrated the power of the microbead-based SiMPull assay for biochemical investigation of rare cells such as hair cells.

Keywords: D572N mutation; LHFPL5; TMC1; hair cells; single-molecule pulldown (SiMPull).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • COS Cells
  • CRISPR-Cas Systems / genetics
  • Chlorocebus aethiops
  • Deafness / genetics*
  • Deafness / pathology
  • Disease Models, Animal
  • Gene Knock-In Techniques
  • HEK293 Cells
  • Hair Cells, Auditory, Inner / metabolism
  • Hair Cells, Auditory, Inner / pathology*
  • Humans
  • Mechanotransduction, Cellular / genetics*
  • Membrane Proteins / genetics*
  • Membrane Proteins / isolation & purification
  • Membrane Proteins / metabolism*
  • Mice
  • Mice, Transgenic
  • Point Mutation
  • Protein Binding / genetics
  • Two-Hybrid System Techniques

Substances

  • LHFPL5 protein, human
  • LHFPL5 protein, mouse
  • Membrane Proteins
  • TMC1 protein, human
  • TMC1 protein, mouse