Functional clustering methods for longitudinal data with application to electronic health records

Stat Methods Med Res. 2021 Mar;30(3):655-670. doi: 10.1177/0962280220965630. Epub 2020 Nov 11.

Abstract

We develop a method to estimate subject-level trajectory functions from longitudinal data. The approach can be used for patient phenotyping, feature extraction, or, as in our motivating example, outcome identification, which refers to the process of identifying disease status through patient laboratory tests rather than through diagnosis codes or prescription information. We model the joint distribution of a continuous longitudinal outcome and baseline covariates using an enriched Dirichlet process prior. This joint model decomposes into (local) semiparametric linear mixed models for the outcome given the covariates and simple (local) marginals for the covariates. The nonparametric enriched Dirichlet process prior is placed on the regression and spline coefficients, the error variance, and the parameters governing the predictor space. This leads to clustering of patients based on their outcomes and covariates. We predict the outcome at unobserved time points for subjects with data at other time points as well as for new subjects with only baseline covariates. We find improved prediction over mixed models with Dirichlet process priors when there are a large number of covariates. Our method is demonstrated with electronic health records consisting of initiators of second-generation antipsychotic medications, which are known to increase the risk of diabetes. We use our model to predict laboratory values indicative of diabetes for each individual and assess incidence of suspected diabetes from the predicted dataset.

Keywords: Bayesian nonparametrics; Dirichlet process; Outcome identification; functional clustering; prediction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bayes Theorem
  • Cluster Analysis
  • Electronic Health Records*
  • Humans
  • Linear Models
  • Longitudinal Studies