In recent years, nanotechnology has made great progress in the development and application of tumor detection, diagnosis, and treatment, and eventually formed a "tumor nanomedicine." The emerging field of "materials." Nanoparticles have attracted much attention because they can overcome physiological barriers, effectively deliver hydrophobic drugs, and specifically target tumor tissues. At present, nanomedicines mainly include lipid nanoparticles, polymer nanoparticles granules, gold nanoparticles, magnetic nanoparticles, mesoporous silica, and other dosage forms. The use of nanomaterials as carriers in the treatment of lung cancer has unique advantages in achieving targeted drug delivery, slow-release drugs, and improvement of poorly soluble drugs and peptide drugs show obvious advantages in terms of bioavailability and reduction of adverse reactions, and have broad research and development prospects. This paper reports a new type of self-assembled Ptx-SA drug-loaded nanometers based on the carrier-free concept fiber, and it was found that the drug-loaded fiber has better cellophilicity, anti-tumor effect in vitro and in vivo than naked drug, and may be mediated by regulating the expression of related proteins. Therefore, the paclitaxel-loaded nano drug delivery system serves as a new type of nano preparation for treating lung cancer is worth further research.