Ultrasmall Iron-Doped Titanium Oxide Nanodots for Enhanced Sonodynamic and Chemodynamic Cancer Therapy

ACS Nano. 2020 Nov 24;14(11):15119-15130. doi: 10.1021/acsnano.0c05235. Epub 2020 Nov 13.

Abstract

Sonodynamic therapy (SDT), which can generate reactive oxygen species (ROS) based on sonosensitizers under ultrasound (US) to kill tumor cells, has emerged as a noninvasive therapeutic modality with high tissue-penetration depth. Herein, ultrasmall iron-doped titanium oxide nanodots (Fe-TiO2 NDs) are synthesized via a thermal decomposition strategy as a type of sonosensitizers to enhance SDT. Interestingly, the Fe doping in this system appears to be crucial in not only enhancing the US-triggered ROS generation of those NDs but also offering NDs the Fenton-catalytic function to generate ROS from tumor endogenous H2O2 for chemodynamic therapy (CDT). After polyethylene glycol (PEG) modification, Fe-TiO2-PEG NDs demonstrate good physiological stability and biocompatibility. With efficient tumor retention after intravenous injection as revealed by in vivo magnetic resonance (MR) and fluorescent imaging, our Fe-TiO2 NDs demonstrate much better in vivo therapeutic performance than commercial TiO2 nanoparticles owing to the combination of CDT and SDT. Moreover, most of those ultrasmall Fe-TiO2 NDs can be effectively excreted within one month, rendering no obvious long-term toxicity to the treated mice. Our work thus presents a type of multifunctional sonosensitizer for highly efficient cancer treatment via simply doping TiO2 nanostructures with metal ions.

Keywords: chemodynamic therapy; sonodynamic therapy; sonosensitizers; toxicity; ultrasmall Fe-TiO2 nanodots,.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Hydrogen Peroxide
  • Iron
  • Mice
  • Neoplasms*
  • Titanium
  • Ultrasonic Therapy*

Substances

  • titanium dioxide
  • Hydrogen Peroxide
  • Titanium
  • Iron