Coronary remodeling and biomechanics: Are we going with the flow in 2020?

Am J Physiol Heart Circ Physiol. 2021 Feb 1;320(2):H584-H592. doi: 10.1152/ajpheart.00634.2020. Epub 2020 Nov 13.

Abstract

Under normal conditions, coronary blood flow (CBF) provides critical blood supply to the myocardium so that it can appropriately meet the metabolic demands of the body. Dogmatically, there exist several known regulators and modulators of CBF that include local metabolites and neurohormonal factors that can influence the function of the coronary circulation. In disease states such as diabetes and myocardial ischemia, these regulators are impaired or shifted such that CBF is reduced. Although functional considerations have been and continued to be well studied, more recent evidence builds upon established studies that collectively suggest that the relative roles of coronary structure, biomechanics, and the influence of cardiac biomechanics via extravascular compression may also play a significant role in dictating CBF. In this mini review, we discuss these regulators of CBF under normal and pathophysiological conditions and their potential influence on the control of CBF.

Keywords: biomechanics; coronary blood flow; function; stiffness; structure.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Coronary Circulation*
  • Coronary Disease / pathology
  • Coronary Disease / physiopathology*
  • Coronary Vessels / pathology
  • Coronary Vessels / physiology
  • Coronary Vessels / physiopathology
  • Humans
  • Models, Cardiovascular*
  • Vascular Remodeling*