High Prevalence of blaCTX-M-15 Gene among Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Causing Extraintestinal Infections in Bangladesh

Antibiotics (Basel). 2020 Nov 11;9(11):796. doi: 10.3390/antibiotics9110796.

Abstract

The emergence of multidrug-resistant (MDR) Escherichia coli (E. coli) clonal lineages with high virulence potential is alarming. Lack of sufficient data on molecular epidemiology of such pathogens from countries with high infection burden, such as Bangladesh, hinders management and infection control measures. In this study, we assessed the population structure, virulence potential and antimicrobial susceptibility of clinical E. coli isolates from Dhaka, Bangladesh. A high prevalence of MDR (69%) and extended-spectrum β-lactamase production (ESBL) (51%) was found. Most E. coli isolates were susceptible to amikacin (95%), meropenem (94%) and nitrofurantoin (89%) antibiotics. A high prevalence of ST131 (22%) and ST95 (9%) followed by ST69 (4%) and ST73 (3%) was observed. Phylogroups B2 (46%), B1 (16%), D (10%) and F (9%) were prominent. blaCTX-M-15 (52%) and blaNDM-1 (5%) were the most prevalent ESBL and carbapenem resistance genes, respectively. Moreover, the predominant pathotype identified was extraintestinal pathogenic E. coli (ExPEC) (41%) followed by enteric pathogens (11%). In conclusion, our results suggest the transmission of clonal E. coli groups amidst diverse E. coli population that are associated with high virulence potential and MDR phenotype. This is of high concern and mandates more efforts towards molecular surveillance of antimicrobial resistance (AMR) in clinically significant pathogens.

Keywords: Bangladesh; Escherichia coli; ST131; blaCTX-M-15; carbapenem resistance; urinary tract infections; virulence genes.