In this work, Ti/PbO2-Co-Sm electrode has been successfully prepared using electrodeposition and further applied for the electrocatalysis of atrazine (ATZ) herbicide wastewater. As expected, Ti/PbO2-Co-Sm electrode displays highest oxygen evolution potential, lowest charge transfer resistance, longest service lifetime and most effective electrocatalytic activity compared with Ti/PbO2, Ti/PbO2-Sm and Ti/PbO2-Co electrodes. Orthogonal and single factor experiments are designed to optimize the condition of ATZ degradation. The maximum degradation efficiency of 92.6% and COD removal efficiency of 84.5% are achieved in electrolysis time 3 h under the optimum condition (current density 20 mA cm-2, Na2SO4 concentration 8.0 g L-1, pH 5 and temperature 35 °C). In addition, Ti/PbO2-Co-Sm electrode exhibits admirable recyclability in degradation progress. The degradation of ATZ is accomplished by indirect electrochemical oxidation and ∙OH is tested as the main active substance in ATZ oxidation. The possible degradation mechanism of ATZ has been proposed according to the degradation intermediates detected by LC-MS. This research suggests that Ti/PbO2-Co-Sm is a promising electrode for ATZ degradation.
Keywords: Atrazine pesticide wastewater; Condition optimization; Electrochemical oxidation; Hydroxyl racial; Mechanism analysis; Ti/PbO(2)–Co-Sm electrode.
Copyright © 2020 Elsevier Ltd. All rights reserved.