Malignant mesothelioma (MM) is an aggressive cancer linked to asbestos exposure. Its poor prognosis makes early diagnosis extremely important, which would provide an opportunity for early treatment and potentially changing outcomes. This study aimed to explore the underlying mechanisms of MM and discover novel noninvasive biomarkers for the diagnosis of malignant mesothelioma. Using Isobaric tags for relative and absolute quantitation (iTRAQ) combined with two-dimensional liquid chromatography/tandem mass spectrometry (2D LC-MS/MS), a total of 145 differentially expressed serum proteins were identified between MM patients and healthy controls. The identified proteins were further analyzed by bioinformatics, out of which three candidate biomarkers (Filamin A (FLNA), Fibulin 1 (FBLN1) and Thrombospondin-1 (TSP-1)) were validated in large cohorts of patients with asbestos-related diseases including MM patients by ELISA assay. Receiver operating characteristic (ROC) curve analysis showed that serum FLNA, FBLN1 and TSP-1 had high diagnostic values in distinguishing MM patients from healthy controls, individuals with asbestos exposure (AE), and patients with pleural plaques (PP) or asbestosis. Meanwhile, serum FBLN1 and TSP-1 possessed good diagnostic values in distinguishing asbestosis patients from healthy controls and individuals with AE. The combination of FLNA, FBLN1, and TSP-1 proteins had higher sensitivity and specificity in discriminating patients with MM, PP and asbestosis. Our findings indicated that analysis of serum proteome using iTRAQ is a feasible strategy for biomarker discovery, and serum FLNA, FBLN1 and TSP-1 may be promising candidates for diagnosis of malignant mesothelioma and screening of at-risk individuals.
Keywords: Biomarker; FBLN1; Malignant mesothelioma; TSP-1; iTRAQ.
Copyright © 2020 Elsevier Inc. All rights reserved.