This study addresses the favourable effects of drought stress imposed by polyethylene glycol (PEG) 6000 on the micropropagated shoots of Stevia rebaudiana. Various concentrations, i.e., 0, 0.5, 1, 2, and 4% of PEG 6000 were applied to the nodal shoot explants for four weeks, and the influence produced on shoots growth parameters, bioactive steviol glycosides (rebaudioside A and stevioside), and nonenzymatic antioxidant activities (total phenolic content (TPC), total flavonoid content (TFC), total antioxidant capacity (TAC), total reducing power (TRP) and 1,1-diphenyl-2-picrylhydrazyl(DPPH)-free radical scavenging activity (FRSA)) was elucidated. The significantly highest yield (92.4% direct shoot organogenesis) and secondary metabolites (2.94% Reb A, 2.52% ST, 95.3% DPPH-FRSA, 15.0% TPC, 13.0 µg/mg TFC, 22.3 µg/mg TAC, and 19.8 µg/mg TRP) production in response to abiotic stress elicitors was obtained in Murashige and Skoog (MS) medium treatment provided with 4% of PEG 6000. The overall trend was significant enhancement of growth dynamics and pharmaceutical compounds from control to 4% of PEG 6000 concentration as a defensive response against reactive oxygen species (ROS) produced in excess by water deficit. This is a very promising study to be employed in bioreactors to get markedly enhanced content of compounds of medicinal importance in the pharmaceutical market.
Keywords: Stevia rebaudiana; antioxidant activities; drought stress; polyethylene glycol (PEG); steviol glycosides (SGs).