In this study, high-throughput sequencing methods were used to analyze the composition and diversity of the microbial communities of three different traditional fermented blueberry beverages (Jiaosu A, Jiaosu B, and Jiaosu C) produced in three different regions. Lactic acid bacteria and yeast counts, total soluble solids, total titration acid, total phenols, total flavonoids, total anthocyanin, superoxide dismutase, and antioxidant activity were analyzed in all samples. The results showed that at the phylum level, the bacteria in all samples were predominantly Firmicutes and Proteobacteria, while the majority of fungus belonged to Ascomycota. At the genus level, Lactobacillus, Gluconobacter, and Acetobacter were the dominant bacteria, and Dekkera and Issatchenkia were the dominant fungi. Our data show that the lactic acid bacteria counts in Jiaosu A were the lowest of the three products, in the range of 4.31-10.9 log CFU/mL, while yeast counts ranged from 6.71 to 7.35 log CFU/mL. The antioxidant activities of Jiaosu C were greater than those of Jiaosu A and Jiaosu B, and Spearman correlation analysis showed that the relative abundance of Lactobacillus and Dekkera was significantly positively correlated with total phenolics, total anthocyanin, total flavonoids, and antioxidant index.
Keywords: antioxidant activity; blueberry; high-throughput sequencing; microbial diversity; spontaneous fermentation.