Venetoclax and pegcrisantaspase for complex karyotype acute myeloid leukemia

Leukemia. 2021 Jul;35(7):1907-1924. doi: 10.1038/s41375-020-01080-6. Epub 2020 Nov 16.

Abstract

Complex karyotype acute myeloid leukemia (CK-AML) has a dismal outcome with current treatments, underscoring the need for new therapies. Here, we report synergistic anti-leukemic activity of the BCL-2 inhibitor venetoclax (Ven) and the asparaginase formulation Pegylated Crisantaspase (PegC) in CK-AML in vitro and in vivo. Ven-PegC combination inhibited growth of multiple AML cell lines and patient-derived primary CK-AML cells in vitro. In vivo, Ven-PegC showed potent reduction of leukemia burden and improved survival, compared with each agent alone, in a primary patient-derived CK-AML xenograft. Superiority of Ven-PegC, compared to single drugs, and, importantly, the clinically utilized Ven-azacitidine combination, was also demonstrated in vivo in CK-AML. We hypothesized that PegC-mediated plasma glutamine depletion inhibits 4EBP1 phosphorylation, decreases the expression of proteins such as MCL-1, whose translation is cap dependent, synergizing with the BCL-2 inhibitor Ven. Ven-PegC treatment decreased cellular MCL-1 protein levels in vitro by enhancing eIF4E-4EBP1 interaction on the cap-binding complex via glutamine depletion. In vivo, Ven-PegC treatment completely depleted plasma glutamine and asparagine and inhibited mRNA translation and cellular protein synthesis. Since this novel mechanistically-rationalized regimen combines two drugs already in use in acute leukemia treatment, we plan a clinical trial of the Ven-PegC combination in relapsed/refractory CK-AML.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Antineoplastic Combined Chemotherapy Protocols / pharmacology*
  • Bridged Bicyclo Compounds, Heterocyclic / pharmacology*
  • Cell Line, Tumor
  • Female
  • HL-60 Cells
  • Humans
  • K562 Cells
  • Leukemia, Myeloid, Acute / drug therapy*
  • Leukemia, Myeloid, Acute / metabolism
  • Male
  • Mice
  • Mice, Inbred NOD
  • Myeloid Cell Leukemia Sequence 1 Protein / metabolism
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • Sulfonamides / pharmacology*
  • U937 Cells

Substances

  • Antineoplastic Agents
  • Bridged Bicyclo Compounds, Heterocyclic
  • Myeloid Cell Leukemia Sequence 1 Protein
  • Proto-Oncogene Proteins c-bcl-2
  • Sulfonamides
  • venetoclax