Strong piezocatalysis in barium titanate/carbon hybrid nanocomposites for dye wastewater decomposition

J Colloid Interface Sci. 2021 Mar 15:586:758-765. doi: 10.1016/j.jcis.2020.10.145. Epub 2020 Nov 5.

Abstract

In this work, the strong piezocatalysis is found in the two-step hydrothermally-synthesized barium titanate/carbon hybrid nanocomposites and is used for rhodamine B dye decomposition. As the carbon content increases from 0 to 5 wt%, the catalytic performance of hybrid nanocomposites first increases and then slightly decreases. When the carbon content increases to 2 wt%, the barium titanate/carbon hybrid nanocomposites exhibit the optimal piezocatalytic performance, which have the ~75.5% dye decomposition ratio and the ~0.04901 min-1 reaction rate constant after the 40 min vibration stimulation, while that of the pure barium titanate are 48.4% and 0.01942 min-1, respectively. The improvement of piezocatalytic performance in barium titanate/carbon hybrid nanocomposites can be ascribed to the action of carbon's charge transfer which promotes the effective separation of the piezoelectrically-induced electric charges. After three runs recycle utilization tests, the barium titanate/carbon hybrid nanocomposites still exhibit ~70% decomposition ratio of rhodamine B dye. The strong piezocatalytic performance and the good reusability make the barium titanate/carbon hybrid nanocomposites potential in the field of wastewater treatment through utilizing natural vibration energy in future.

Keywords: Barium titanate /carbon hybrid nanocomposites; Piezocatalysis; Piezoelectric effect; Water treatment.