Tularemia, a zoonosis generally prevalent in the northern half of the globe, is caused by Francisella tularensis. Among various Francisella tularensis species, subspecies tularensis is the most pathogenic to humans causing the infection through an airborne route, abrasions in the skin, and contact with infected animals. At present no approved vaccine exists for this intracellular pathogen. Principal defensive immunity against Francisella is T-cell mediated immunity, hence, picking out significant T-cell antigens is obligatory for Francisella vaccine advancement. In the present study, an immunoproteomics approach was employed to discover T-cell antigens by infecting dendritic cells derived from monocytes with F. tularensis NCTC10857, followed by immunoaffinity isolation of MHC class I molecules and acidic elution of bound peptides. The tandem mass spectrometry technique was used to identify the sequences of the isolated peptides. Ten MHC class I restricting Francisella derived peptides were successfully identified. Top three isolated peptide sequences were modeled and used for in silico docking study to substantiate their interaction and characterize their binding potential. Virtual docking studies further confirmed a high binding affinity for top three peptides with MHC class I molecule. The outcome of this study has led to identification of the probable vaccine candidates for human studies based on T cell-antigens against Francisella.
Keywords: Bioterrorism; Dendritic cells; Francisella; Immunoinformatics; Immunoproteomics; MHC.
Copyright © 2020. Published by Elsevier B.V.