Background: Diagnosis of multiple lung nodules has become convenient and frequent due to the improvement of computed tomography (CT) scans. However, to distinguish intrapulmonary metastasis (IPM) from multiple primary lung cancer (MPLC) remains challenging. Herein, for the accurate optimization of therapeutic options, we propose a comprehensive algorithm for multiple lung carcinomas based on a multidisciplinary approach, and investigate the prognosis of patients who underwent surgical resection.
Methods: Patients with multiple lung carcinomas who were treated at West China Hospital of Sichuan University from April, 2009 to December, 2017, were retrospectively identified. A comprehensive algorithm combining histologic assessment, molecular analysis, and imaging information was used to classify nodules as IPM or MPLC. The Kaplan-Meier method was used to estimate survival rates, and the relevant factors were evaluated using the log-rank test or Cox proportional hazards model.
Results: The study included 576 patients with 1,295 lung tumors in total. Significant differences were observed between the clinical features of 171 patients with IPM and 405 patients with MPLC. The final classification consistency was 0.65 and 0.72 compared with the criteria of Martini and Melamed (MM) and the American College of Chest Physicians (ACCP), respectively. Patients with independent primary tumors had better overall survival (OS) than patients with intra-pulmonary metastasis (HR =3.99, 95% CI: 2.86-5.57; P<0.001). Nodal involvement and radiotherapy were independent prognostic factors.
Conclusions: The comprehensive algorithm was a relevant tool for classifying multifocal lung tumors as MPLC or IPM, and could help doctors with precise decision-making in routine clinical practice. Patients with multiple lesions without lymph node metastasis or without radiotherapy tended to have a better prognosis.
Keywords: Intrapulmonary metastasis (IPM); comprehensive algorithm; multiple primary lung cancer (MPLC); survival.
2020 Annals of Translational Medicine. All rights reserved.