Novel Similarity Methods Evaluation and Feasible Application for Pharmaceutical Raw Material Identification with Near-Infrared Spectroscopy

ACS Omega. 2020 Nov 10;5(46):29864-29871. doi: 10.1021/acsomega.0c03831. eCollection 2020 Nov 24.

Abstract

Raw material identification (RMID) is necessary and important to fulfill the quality and safety requirements in the pharmaceutical industry. Near-infrared (NIR) spectroscopy is a rapid, nondestructive, and commonly used analytical technique that could offer great advantages for RMID. In this study, two brand new similarity methods S1 and S2, which could reflect the similarity from the perspective of the inner product of the two vectors and the closeness with the cosine of the vectorial angle or correlation coefficient, were proposed. The ability of u and v factors to distinguish the difference between small peaks was investigated with the spectra of NIR. The results showed that the distinguishing ability of u is greater than v, and the distinguishing ability of S2 is greater than S1. Adjusting exponents u and v in these methods, which are variable and configurable parameters greater than 0 and less than infinity, could identify small peaks in different situations. Meanwhile, S1 and S2 could rapidly identify raw materials, suggesting that the on-site and in situ pharmaceutical RMID for large-volume applications can be highly achievable. The methods provided in this study are accurate and easier to use than traditional chemometric methods, which are important for the pharmaceutical RMID or other analysis.