Cohesin depleted cells rebuild functional nuclear compartments after endomitosis

Nat Commun. 2020 Dec 1;11(1):6146. doi: 10.1038/s41467-020-19876-6.

Abstract

Cohesin plays an essential role in chromatin loop extrusion, but its impact on a compartmentalized nuclear architecture, linked to nuclear functions, is less well understood. Using live-cell and super-resolved 3D microscopy, here we find that cohesin depletion in a human colon cancer derived cell line results in endomitosis and a single multilobulated nucleus with chromosome territories pervaded by interchromatin channels. Chromosome territories contain chromatin domain clusters with a zonal organization of repressed chromatin domains in the interior and transcriptionally competent domains located at the periphery. These clusters form microscopically defined, active and inactive compartments, which likely correspond to A/B compartments, which are detected with ensemble Hi-C. Splicing speckles are observed nearby within the lining channel system. We further observe that the multilobulated nuclei, despite continuous absence of cohesin, pass through S-phase with typical spatio-temporal patterns of replication domains. Evidence for structural changes of these domains compared to controls suggests that cohesin is required for their full integrity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism*
  • Cell Line, Tumor
  • Cell Nucleus / genetics
  • Cell Nucleus / metabolism
  • Chromatin / genetics
  • Chromatin / metabolism
  • Chromosomal Proteins, Non-Histone / genetics
  • Chromosomal Proteins, Non-Histone / metabolism*
  • Cohesins
  • Humans
  • Mitosis*
  • S Phase

Substances

  • Cell Cycle Proteins
  • Chromatin
  • Chromosomal Proteins, Non-Histone

Associated data

  • Dryad/10.5061/dryad.vt4b8gtqb