An inexpensive, easy to prepare, and label-free electrochemical impedance spectroscopy-based biosensor has been developed for the selective detection of human interleukin 6 (IL-6), interleukin 8 (CXCL8, IL-8), and tumor necrosis factor (TNFα)-potential inflammatory cancer biomarkers. We describe a, so far, newly developed and unexplored method to immobilize antibodies onto a titanium dioxide nanotube (TNT) array by physical adsorption. Immobilization of anti-IL-6, anti-IL-8, and anti-TNFα on TNT and the detection of human IL-6, IL-8, and TNFα were examined using electrochemical impedance spectroscopy (EIS). The impedimetric immunosensor demonstrates good selectivity and high sensitivity against human biomarker analytes and can detect IL-6, IL-8, and TNFα at concentrations as low as 5 pg/mL, equivalent to the standard concentration of these proteins in human blood. The calibration curves evidenced that elaborated biosensors are sensitive to three cytokines within 5 ÷ 2500 pg/mL in the 0.01 M phosphate-buffered saline solution (pH 7.4).
Keywords: electrochemical impedance spectroscopy; immunosensor; interleukin 6; interleukin 8; titanium dioxide nanotubes; tumor necrosis factor.