Fluid intake is important for people to maintain body fluid homeostasis. Inadequate fluid intake leads to negative health consequences, such as headache, dizziness and urolithiasis. However, people in busy lifestyles usually forget to drink sufficient water and neglect the importance of fluid intake. Fluid intake management is important to assist people in adopting individual drinking behaviors. This work aims to propose a fluid intake monitoring system with a wearable inertial sensor using a hierarchical approach to detect drinking activities, recognize sip gestures and estimate fluid intake amount. Additionally, container-dependent amount estimation models are developed due to the influence of containers on fluid intake amount. The proposed fluid intake monitoring system could achieve 94.42% accuracy, 90.17% sensitivity, and 40.11% mean absolute percentage error (MAPE) for drinking detection, gesture spotting and amount estimation, respectively. Particularly, MAPE of amount estimation is improved approximately 10% compared to the typical approaches. The results have demonstrated the feasibility and the effectiveness of the proposed fluid intake monitoring system.
Keywords: drinking activity recognition; drinking amount estimation; fluid intake monitoring; wearable inertial sensor.