Pancreatic ductal adenocarcinoma(PDAC) is resistant to the PD-1/PD-L1 blockade therapy. Previously, the combination of PD-1 blockade and vaccine therapy was shown to have a modest antitumor activity in murine models of PDAC. We used a murine syngeneic model of metastatic PDAC to identify, among multiple T cell modulators tested, which therapeutic agents in combination with the GVAX cancer vaccine and an anti-PD-1 antagonist antibody(αPD-1) are able to improve the survival. We found that an anti-CD137 agonist antibody(αCD137) most significantly improved survival in the mouse PDAC model. Moreover, αPD-1 and αCD137 together in combination with vaccine therapy more significantly increased the expression of costimulatory molecules CD137 and OX40 on CD4+PD-1+ and CD8+PD-1+ T cells comparing to αPD-1 or αCD137, respectively, suggesting that T cell activation within PDACs were enhanced by a synergy of αCD137 and αPD-1. On another hand, αCD137 treatment led to an increase in effector memory T cells independent of αPD-1. Although αCD137 does not increase the cytotoxic effector T cell function, the addition of αCD137 to GVAX+αPD-1 increased expression of IFNγ in EOMES + exhausted tumor-infiltrating T cells. Taken together, this preclinical study established the mechanism of targeting CD137 to enhance effector memory and activated T cells in PDAC. Immunohistochemistry analysis of resected human PDACs following the neo-adjuvant GVAX treatment showed increased levels of CD8+ T cells in those with high levels of CD137 expression, supporting an ongoing clinical trial of testing CD137 as a potential target in treating PDACs that are inflamed with T cells by vaccine therapy.
Keywords: CD137; Combination immunotherapy; PD-1; Pancreatic ductal adenocarcinoma.
Copyright © 2020. Published by Elsevier B.V.