Background: Differentiation between traumatic osteoporotic and non-osteoporotic vertebral fractures is crucial for optimal therapy planning. We postulated that the morphology of the posterior edge of the cranial fragment of A3 vertebral fractures is different in these entities. Therefore, the purpose of this study is to develop and validate a simple method to differentiate between osteoporotic and non-osteoporotic A3 vertebral fractures by morphological analysis.
Methods: A total of 86 computer tomography scans of AO Type A3 (cranial burst) vertebral body fractures (52 non-osteoporotic, 34 osteoporotic) were included in this retrospective study. Posterior edge morphology was analyzed using the sagittal paramedian slice with the most prominent shaped bulging. Later, the degree of bulging of the posterior edge fragment was quantified using a geometric approach. Additionally, the Hounsfield units of the broken vertebral body, the vertebra above, and the vertebra below the fracture were measured.
Results: We found significant differences in the extent of bulging comparing osteoporotic and non-osteoporotic fractures in our cohort. Using the presented method, sensitivity was 100%, specificity was 96%. The positive predictive value (PPV) was 94%. In contrast, by evaluating the Hounsfield units, sensitivity was 94%, specificity 94% and the PPV was 91%.
Conclusions: Our method of analysis of the bulging of the dorsal edge fragment in traumatic cranial burst fractures cases allows, in our cases, a simple and valid differentiation between osteoporotic and non-osteoporotic fractures. Further validation in a larger sample, including dual-energy X-ray absorptiometry (DXA) measurements, is necessary.
Keywords: Hounsfield units; morphology; osteoporosis; posterior edge; traumatic vertebral fracture.