Mesenchymal stem cells (MSCs) have been spotlighted in the field of cell therapies as a promising tool for the treatment of intractable inflammatory diseases. However, their therapeutic potency still shows a gap between preclinical and clinical settings, and distinctive characteristics of specific tissue-derived MSCs and definitive ways to maximize their beneficial functions have not been fully elucidated yet. We previously identified the unique MSCs population from human palatine tonsil (TMSCs) and revealed their superior properties in proliferation and ROS regulation. Based on these findings, we explored further characteristics of TMSCs particularly focused on immunomodulatory function. We found the merit of TMSCs as a therapeutic agent that retains favorable MSCs properties until relatively late passages and revealed that pre-treatment of TNF-α can enhance the immunomodulatory abilities of TMSCs through the upregulation of the PTGS2/PGE2 axis. TMSCs primed with TNF-α effectively restrained the proliferation and differentiation of T lymphocytes and macrophages in vitro, and more interestingly, these TNF-α-licensed TMSCs exhibited significant prophylactic and therapeutic efficacy in a murine model of autoimmune-mediated acute colitis via clinical and histopathological assessment compared to unprimed naïve TMSCs. These findings provide novel insight into the optimization and standardization of MSCs-based anti-inflammatory therapies, especially targeting inflammatory bowel disease (IBD).
Keywords: colitis; cyclooxygenase-2; immunomodulation; mesenchymal stem cell; palatine tonsil; prostaglandin E2; tumor necrosis factor alpha.