Primate brains typically have regions within the ventral visual stream that are selectively responsive to faces. In macaques, these face patches are located in similar parts of inferotemporal cortex across individuals although correspondence with particular anatomical features has not been reported previously. Here, using high-resolution functional and anatomical imaging, we show that small "bumps," or buried gyri, along the lower bank of the superior temporal sulcus are predictive of the location of face-selective regions. Recordings from implanted multielectrode arrays verified that these bumps contain face-selective neurons. These bumps were present in monkeys raised without seeing faces and that lack face patches, indicating that these anatomical landmarks are predictive of, but not sufficient for, the presence of face selectivity. These bumps are found across primate species that span taxonomy lines, indicating common evolutionary developmental mechanisms. The bumps emerge during fetal development in macaques, indicating that they arise from general developmental mechanisms that result in the regularity of cortical folding of the entire brain.
Keywords: cortical folding; face patch; macaque; structure-function; superior temporal sulcus.
Copyright © 2020 the Author(s). Published by PNAS.