Background: Prompt resuscitation with plasma and other blood products reduces trauma-related morbidity and mortality. Standard storage and preparation techniques for frozen plasma limit its utility in the pre-hospital setting. Plasma can be dehydrated using hot air (spray-dried plasma), stored at room temperature and rehydrated quickly for use. The spray-dry process decreases high-molecular-weight multimers of von Willebrand factor compared with conventional plasma. The objective of this study was to compare platelet adhesion and thrombus formation in a microfluidic perfusion assay facilitated by spray-dried compared with frozen plasma using a non-inferiority design.
Study design and methods: Whole blood was centrifuged to obtain red cell concentrate, and a platelet pellet that was suspended in either spray-dried or frozen plasma to create recombined whole blood. Platelets were fluorescently labelled, and samples were flowed through a collagen-coated microchannel. Surface area coverage by platelets and thrombi was analysed and compared between each spray-dried and frozen plasma pair.
Results: Compared with whole blood samples containing frozen plasma, samples with spray-dried plasma had similar surface area coverage of platelets and thrombi after 180 s of flow. Even when diluted with von Willebrand factor-free plasma, there was no reduction thrombus formation.
Conclusion: Spray-dried plasma is not inferior in supporting haemostasis compared with fresh frozen plasma in a paired analysis. It offers advantages with respect to portability and ease of preparation over frozen plasma in the pre-hospital setting. This study supports development of clinical studies to evaluate the efficacy and safety of spray-dried plasma in trauma patients.
Keywords: component processing; plasma; spray drying; transfusion; trauma.
© 2020 International Society of Blood Transfusion.