Amyloid-β (Aβ) peptide aggregation into soluble oligomers and insoluble plaques is a precipitating event in the pathogenesis of Alzheimer's disease (AD). Given that synaptic activity can regulate Aβ generation, we postulated that 5HT2A -Rs may regulate Aβ as well. We treated APP/PS1 transgenic mice with the selective 5HT2A inverse agonists M100907 or Pimavanserin systemically and measured brain interstitial fluid (ISF) Aβ levels in real-time using in vivo microdialysis. Both compounds reduced ISF Aβ levels by almost 50% within hours, but had no effect on Aβ levels in 5HT2A -R knock-out mice. The Aβ-lowering effects of Pimavanserin were blocked by extracellular-regulated kinase (ERK) and NMDA receptor inhibitors. Chronic administration of Pimavanserin by subcutaneous osmotic pump to aged APP/PS1 mice significantly reduced CSF Aβ levels and Aβ pathology and improved cognitive function in these mice. Pimavanserin is FDA-approved to treat Parkinson's disease psychosis, and also has been shown to reduce psychosis in a variety of other dementia subtypes including Alzheimer's disease. These data demonstrate that Pimavanserin may have disease-modifying benefits in addition to its efficacy against neuropsychiatric symptoms of Alzheimer's disease. Read the Editorial Highlight for this article on page 560.
Keywords: 5HT2A receptors; Alzheimer's disease; Pimavanserin; amyloid-β; microdialysis; serotonin receptors.
© 2020 International Society for Neurochemistry.