Tetrandrine (TET) is a potent calcium channel blocker used to treat hypertension and inflammation. Currently, TET is predominantly used to treat a variety of human diseases, and there is little information regarding the use of TET against plant pathogens. In this study, we explored the antifungal activity of TET on a plant pathogen, Botrytis cinerea. We show that administration of low concentrations of TET effectively inhibited hyphal growth of fungus grown on potato dextrose agarose and decreased the virulence of B. cinerea in tomato plants. Real-time PCR revealed that the expression of drug efflux pump-related genes (alcohol dehydrogenase 1, multidrug/pheromone exporter, pleiotropic drug resistance protein 1, and synaptic vesicle transporter) were downregulated in the presence of TET. Finally, we show that TET acts synergistically with iprodione, resulting in increased inhibition of B. cinerea both in vitro and in vivo. These results indicate that TET might act as an effective antifungal agent in reducing gray mold disease.
Keywords: antifungal activity; antimicrobial resistance; chemical control; fungal pathogens; fungicide resistance; gray mold; iprodione; tetrandrine.