In this article, a Siamese network is applied to the drill wear classification problem. For furniture companies, one of the main problems that occurs during the production process is finding the exact moment when the drill should be replaced. When the drill is not sharp enough, it can result in a poor quality product and therefore generate some financial loss for the company. In various approaches to this problem, usually, three classes are considered: green for a drill that is sharp, red for the opposite, and yellow for a tool that is suspected of being worn out, requiring additional evaluation by a human expert. In the above problem, it is especially important that the green and the red classes not be mistaken, since such errors have the highest probability of generating financial loss for the manufacturer. Most of the solutions analysing this problem are too complex, requiring specialized equipment, high financial investment, or both, without guaranteeing that the obtained results will be satisfactory. In the approach presented in this paper, images of drilled holes are used as the training data for the Siamese network. The presented solution is much simpler in terms of the data collection methodology, does not require a large financial investment for the initial equipment, and can accurately qualify drill wear based on the chosen input. It also takes into consideration additional manufacturer requirements, like no green-red misclassifications, that are usually omitted in existing solutions.
Keywords: Siamese network; contrastive loss function; convolutional neural networks; deep learning; tool condition monitoring.