Background: Prior studies in humans have suggested that telomere shortening may be accelerated by infection, but research on multiple pathogens and use of large population-based study samples has been limited. We estimated cross-sectional associations between seropositivity to five persistent pathogens (Herpes Simplex Virus Type-1 (HSV-1), Herpes Simplex Virus Type-2 (HSV-2), cytomegalovirus (CMV), Helicobacter pylori (H.pylori), and Hepatitis B) as well as total pathogen burden and leukocyte telomere length. Data were derived from the National Health and Nutrition Examination Survey (1999-2000) for individuals 20-49 years of age, N = 1708. We analyzed the influence of each pathogen separately, a pathogen count score and a latent class model of pathogen burden on log telomere length using linear regression models, adjusted for covariates.
Results: Individuals in a latent pathogen burden class characterized by high probabilities of infection with HSV-1, CMV, and H. pylori, had significantly decreased log telomere length (- 0.30 [95% CI: - 0.36, - 0.24]) compared to those in a latent class characterized by low probabilities of all five infections. There were limited significant associations using other pathogen measures.
Conclusions: These results suggest that infection with specific combinations of pathogens may be one mechanism contributing to accelerated cellular senescence with possible origins early in the life course.
Keywords: Biological aging; Geroscience; Immunosenescence; Persistent infections; Telomere length.