Objectives: We report on the key clinical predictors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and present a clinical decision rule that can risk stratify patients for COVID-19.
Design, participants and setting: A prospective cohort of patients assessed for COVID-19 at a screening clinic in Melbourne, Australia. The primary outcome was a positive COVID-19 test from nasopharyngeal swab. A backwards stepwise logistic regression was used to derive a model of clinical variables predictive of a positive COVID-19 test. Internal validation of the final model was performed using bootstrapped samples and the model scoring derived from the coefficients, with modelling performed for increasing prevalence.
Results: Of 4226 patients with suspected COVID-19 who were assessed, 2976 patients underwent SARS-CoV-2 testing (n = 108 SARS-CoV-2 positive) and were used to determine factors associated with a positive COVID-19 test. The 7 features associated with a positive COVID-19 test on multivariable analysis were: COVID-19 patient exposure or international travel, Myalgia/malaise, Anosmia or ageusia, Temperature, Coryza/sore throat, Hypoxia-oxygen saturation < 97%, 65 years or older-summarized in the mnemonic COVID-MATCH65. Internal validation showed an AUC of 0.836. A cut-off of ≥ 1.5 points was associated with a 92.6% sensitivity and 99.5% negative predictive value (NPV) for COVID-19.
Conclusions: From the largest prospective outpatient cohort of suspected COVID-19 we define the clinical factors predictive of a positive SARS-CoV-2 test. The subsequent clinical decision rule, COVID-MATCH65, has a high sensitivity and NPV for SARS-CoV-2 and can be employed in the pandemic, adjusted for disease prevalence, to aid COVID-19 risk-assessment and vital testing resource allocation.