Analysis on the Effects of External Temperature and Welding Speed on the Safety of EVA Waterproofing Sheet Joints by Hot Air Welding

Materials (Basel). 2020 Dec 7;13(23):5586. doi: 10.3390/ma13235586.

Abstract

This study analyzes the optimal seasonal ambient temperature during welding and welding speed conditions for securing high tensile strength of ethylene vinyl acetate (EVA) waterproofing sheets bonded for roofing, installed by hot air welded joints (overlaps). Seven separate ambient temperature conditions (-10, -5, and 0 °C for winter conditions, 20 °C for the normal condition, and 25, 30, and 35 °C for summer conditions) were set for the test variable and seven speed conditions (3, 4, 5, 6, 7, 8, and 9 m/min) for hot air welding. Based on these conditions, EVA sheet joint specimens were prepared, and the tensile strength of the joint sections was tested and measured. Tensile strength results, compared to normal temperature conditions (20 °C) showed an increase in the summer temperature condition but a decrease during winter temperature conditions. The analysis on the effects of the welding speed showed that in summer temperature conditions (25, 30, and 35 °C), the optimum hot air welding speed is 4.3~9.0 m/min at 25 °C, 4.7~8.7 m/min at 30 °C and 5.2~8.6 m/min at 35 °C, whereas in winter (-10, -5, and 0 °C), the optimum hot air welding temperature is 3~4.1 m/min at -10 °C, 3~4.6 m/min at -5 °C and 3~4.9 m/min at 0 °C. Research results demonstrate that it is imperative to consider the welding speed in accordance to the respective seasonal temperature conditions to secure construction quality of the EVA joints for roofing.

Keywords: EVA waterproofing sheet; hot air welder; optimal welding speed; sheet joint; synthetic polymer; tensile performance.