In this study, Pediococcus pentococcus PP04 isolated from the Northeast pickled cabbage had good gastrointestinal tolerance and can colonize in the intestine stably. C57BL/6N mice were fed a high-fat diet to build animal models and treated with Pediococcus pentosaceus PP04 to evaluate the antihyperlipidemia effect. After 8 weeks, the indicators of hyperlipidemia, liver injury, and inflammation were measured. The treatment of P. pentosaceus PP04 reduced the gain of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), free fatty acids (FFAs), leptin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), lipopolysaccharides (LPS), and tumor necrosis factor-α (TNF-α) significantly. The western blotting results suggested P. pentosaceus PP04 ameliorated high-fat diet-induced hyperlipidemia by the AMPK signaling pathway, which stimulated lipolysis via upregulation of PPARα and inhibited lipogenesis by downregulation of SREBP-1c, fatty acid synthase (FAS), and stearoyl-CoA desaturase-1 (SCD1) mainly. Furthermore, P. pentosaceus PP04 improved high-fat diet-induced oxidative stress effectively by triggering the Nrf2/CYP2E1 signaling pathway that enhanced the antioxidant activity including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px).
Keywords: AMPK signaling pathway; Pediococcus pentosaceus PP04; hyperlipidemia; oxidative stress.