Synthesis of Dendritic Glycoclusters and Their Applications for Supramolecular Gelation and Catalysis

J Org Chem. 2020 Dec 18;85(24):16136-16156. doi: 10.1021/acs.joc.0c01978. Epub 2020 Dec 10.

Abstract

Glycoclusters with three, four, and six arms of glycosyl triazoles were designed, synthesized, and characterized. The self-assembling properties of these molecules and their catalytic activity as ligands in copper-catalyzed azide and alkyne cycloaddition (CuAAC) reactions were studied. The compounds with a lower number of branches exhibit excellent gelation properties and can function as supramolecular gelators. The resulting gels were characterized using optical microcopy and atomic force microscopy. The glycoconjugates containing six branches showed significant catalytic activity for copper sulfate mediated cycloaddition reactions. In aqueous solutions, 1 mol % of glycoclusters to substrates was efficient at accelerating these reactions. Several trimeric compounds were found to be capable of forming co-gels with the catalytically active hexameric compounds. Using the organogels formed by the glycoconjugates as supramolecular catalysts, efficient catalysis was demonstrated for several CuAAC reactions. The metallogels with CuSO4 were also prepared as gel columns, which can be reused for the cycloaddition reactions several times. These include the preparation of a few glycosyl triazoles and aryl triazoles and isoxazoles. We expect that these sugar-based soft biomaterials will have applications beyond supramolecular catalysis for copper-catalyzed cycloaddition reactions. They may also be useful as ligands or gel matrixes for other metal-ion catalyzed organic reactions.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't