DOES SIZE MATTER? A CRITICAL REVIEW OF META-ANALYSIS IN AGRONOMY

Exp Agric. 2019;55(2):200-229. doi: 10.1017/S0014479719000012. Epub 2019 Mar 14.

Abstract

Intended to test broad hypotheses and arrive at unifying conclusions, meta-analysis is the process of extracting, assembling, and analyzing large quantities of data from multiple publications to increase statistical power and uncover explanatory patterns. This paper describes the ways in which meta-analysis has been applied to support claims and counter-claims regarding two topics widely debated in agricultural research, namely organic agriculture (OA) and conservation agriculture (CA). We describe the origins of debate for each topic and assess prominent meta-analyses considering data-selection criteria, research question framing, and the interpretation and extrapolation of meta-analytical results. Meta-analyses of OA and CA are also examined in the context of the political economy of development-oriented agricultural research. Does size matter? We suggest that it does, although somewhat ironically. While meta-analysis aims to pool all relevant studies and generate comprehensive databases from which broad insights can be drawn, our case studies suggest that the organization of many meta-analyses may affect the generalizability and usefulness of research results. The politicized nature of debates over OA and CA also appear to affect the divergent ways in which meta-analytical results may be interpreted and extrapolated in struggles over the legitimacy of both practices. Rather than resolving scientific contestation, these factors appear to contribute to the ongoing debate. Meta-analysis is nonetheless becoming increasingly popular with agricultural researchers attracted by the power for the statistical inference offered by large datasets. This paper consequently offers three suggestions for how scientists and readers of scientific literature can more carefully evaluate meta-analyses. First, the ways in which papers and data are collected should be critically assessed. Second, the justification of research questions, framing of farming systems, and the scales at which research results are extrapolated and discussed should be carefully evaluated. Third, when applied to strongly politicized topics situated in an arena of scientific debate, as is the case with OA and CA, more conservative interpretations of meta-analytical results that recognize the socially and politically embedded nature of agricultural research is are needed.