Diagnostic roles of urinary kidney microvesicles in diabetic nephropathy

Ann Transl Med. 2020 Nov;8(21):1431. doi: 10.21037/atm-20-441.

Abstract

Background: The pathology of diabetic nephropathy (DN) broadly involves the injury of glomeruli, tubulointerstitium and endothelium. Cells from these compartments can release increased numbers of microvesicles (MVs) into urine when stressed or damaged. Currently whether urinary MVs from these three parts can help diagnose DN and reflect pathological features remain unclear.

Methods: Forty-nine patients with histologically proven DN and 29 proteinuric controls with membranous nephropathy or minimal change disease were enrolled. Urinary podocyte, proximal tubular and endothelial cell-derived MVs were quantified by flow cytometry. Renal glomerular, tubulointerstitial and vascular lesions were semi-quantitatively scored and their relevance to urinary MVs were analyzed.

Results: DN patients had greater numbers of urinary MVs from podocytes, proximal tubular and endothelial cells compared with proteinuric controls. The combination of podocyte nephrin+ MVs and diabetic retinopathy optimally diagnose DN with 89.7% specificity and 88.9% sensitivity. Moreover, positive correlations were observed between urinary levels of proximal tubular MVs and the severity of tubular injury and between urinary levels of endothelial MVs and the degree of vascular injury. Using urinary proximal tubular MVs as the indicators for tubular injury, the differences between DN patients and proteinuric controls diminished after matching the degree of renal vascular injury or when proteinuria >8 g/24 h.

Conclusions: Urinary kidney-specific cell-derived MVs might serve as noninvasive biomarkers for the diagnosis of DN in diabetic proteinuric patients. Their elevated levels could reflect corresponding renal pathological lesions, helping physicians look into the heterogeneity of DN.

Keywords: Diabetic nephropathy (DN); diagnosis; microvesicle; renal pathology.