Hydrocarbon-Degrading Bacteria Found Tightly Associated with the 50-70 μm Cell-Size Population of Eukaryotic Phytoplankton in Surface Waters of a Northeast Atlantic Region

Microorganisms. 2020 Dec 9;8(12):1955. doi: 10.3390/microorganisms8121955.

Abstract

The surface of marine eukaryotic phytoplankton can harbour communities of hydrocarbon-degrading bacteria; however, this algal-bacterial association has, hitherto, been only examined with non-axenic laboratory cultures of micro-algae. In this study, we isolated an operationally-defined community of phytoplankton, of cell size 50-70 μm, from a natural community in sea surface waters of a subarctic region in the northeast Atlantic. Using MiSeq 16S rRNA sequencing, we identified several recognized (Alcanivorax, Marinobacter, Oleispira, Porticoccus, Thalassospira) and putative hydrocarbon degraders (Colwelliaceae, Vibrionaceae) tightly associated with the phytoplankton population. We combined fluorescence in situ hybridisation with flow-cytometry (FISH-Flow) to examine the association of Marinobacter with this natural eukaryotic phytoplankton population. About 1.5% of the phytoplankton population contained tightly associated Marinobacter. The remaining Marinobacter population were loosely associated with either eukaryotic phytoplankton cells or non-chlorophyll particulate material. This work is the first to show the presence of obligate, generalist and putative hydrocarbonoclastic bacteria associated with natural populations of eukaryotic phytoplankton directly from sea surface water samples. It also highlights the suitability of FISH-Flow for future studies to examine the spatial and temporal structure and dynamics of these and other algal-bacterial associations in natural seawater samples.

Keywords: Marinobacter; eukaryotic phytoplankton; flow cytometry; fluorescence in situ hybridisation (FISH); hydrocarbonoclastic bacteria; hydrocarbons; marine environment; micro-algae; phycosphere.