Background: Recent studies have demonstrated a complex and dynamic neural crosstalk between the heart and brain. A heart-brain interaction has been described regarding cardiac ischemia, but the cerebral metabolic mechanisms involved are unknown.
Methods: Male Sprague Dawley rats were randomly allocated into 2 groups: those receiving myocardial ischemia-reperfusion surgery (IR group, n =10) and surgical controls (Con group, n=10). These patterns of metabolic abnormalities in different brain regions were assessed using proton magnetic resonance spectroscopy (PMRS).
Results: Results assessed by echocardiography showed resultant cardiac dysfunction following heart ischemia-reperfusion. Compared with the control group, the altered metabolites in the IR group were taurine and choline, and differences mainly occurred in the thalamus and brainstem.
Conclusions: Alterations in cerebral taurine and choline are important findings offering new avenues to explore neuroprotective strategies for myocardial ischemia-reperfusion injury. These results provide preliminary evidence for understanding the cerebral metabolic process underlying myocardial ischemia-reperfusion injury in rats.
Keywords: brainstem; myocardial ischemia-reperfusion injury; proton nuclear magnetic spectroscopy; thalamus.