Understanding the cellular responses based on low-density electrospun fiber networks

Mater Sci Eng C Mater Biol Appl. 2021 Feb:119:111470. doi: 10.1016/j.msec.2020.111470. Epub 2020 Aug 30.

Abstract

Fibers produced from electrospinning are well-known to be extremely fine with diameters ranging from tens of nanometers to a few microns. Such ultrafine fibers not only allow for engineering scaffolds resembling the ultrastructure of the native extracellular matrix, but also offer possibility to explore the remodeling behavior of cells in vitro, due to their mechanically 'adequate' softness endowed by their ultrafine fineness. However, the remodeling effect of cells on the biomimicking fibrous substrates remains to be understood, because the crisscrossing and entangling among nanofibers in those tightly packed fibrous mats ultimately lead to merely a topological phenomenon, similar to that of the nanofiber-like topography embossed on the surface of a solid matter. In this study, the effect of nanofiber density on cellular response behavior was investigated by reducing the density of electrospun fiber networks. Using polycaprolactone (PCL) as a model polymer, randomly oriented fiber networks with various densities, namely, 37.7 ± 16.3 μg/cm2 (D1), 103.8 ± 16.3 μg/cm2 (D2), 198.2 ± 40.0 μg/cm2 (D3), and 471.8 ± 32.7 μg/cm2 (D4), were prepared by electrospinning for varied collection durations (10 s, 50 s, 100 s, and 10 min, respectively). By examining the responsive behavior of the human induced pluripotent stem cell-derived mesenchymal stem cells (hiPS-MSCs) cultured on these nanofibrous networks, we showed that the fiber network with a moderate density (D2) is beneficial to the cell attachment, spreading, actin polymerization, contractility and migration. There also showed an increased tendency in nuclear localization of the Yes-associated protein (YAP) and subsequent activation of YAP responsive gene transcription, and cell proliferation and collagen synthesis were also enhanced on the D2. However, further increasing the fiber density (D3, D4) gave rise to weakened induction effect of fibers on the cellular responses. These results enrich our understanding on the effect of fiber density on cell behavior, and disclose the dependence of cellular responses on fiber density. This study paves the way to precisely design biomimetic fibrous scaffolds for achieving enhanced cell-scaffold interactions and tissue regeneration.

Keywords: Electrospinning; Extracellular matrix; Fiber density; Mechanotransduction; Remodeling.

MeSH terms

  • Extracellular Matrix
  • Humans
  • Induced Pluripotent Stem Cells*
  • Nanofibers*
  • Polyesters
  • Tissue Engineering
  • Tissue Scaffolds

Substances

  • Polyesters