Circulating tumor cells (CTCs) and the immune infiltration of tumors are closely related to clinical outcomes. This study aimed to verify the influence of stromal lymphocyte infiltration and the immune context of tumor microenvironment on the hematogenous spread and prognosis of 282 chemotherapy naïve primary BC patients. To detect the presence of mesenchymal CTCs, RNA extracted from CD45-depleted peripheral blood was interrogated for the expression of mesenchymal gene transcripts. Tumor-infiltrating lymphocytes (TILs) were detected in the stromal areas by immunohistochemistry, using CD3, CD8, and CD45RO antibodies. The concentrations of 51 plasma cytokines were measured by multiplex bead arrays. TILs infiltration in mesenchymal CTC-positive patients significantly decreased their progression-free survival (HR = 4.88, 95% CI 2.30-10.37, p < 0.001 for CD3high; HR = 6.17, 95% CI 2.75-13.80, p < 0.001 for CD8high; HR = 6.93, 95% CI 2.86-16.81, p < 0.001 for CD45ROhigh). Moreover, the combination of elevated plasma concentrations of transforming growth factor beta-3 (cut-off 662 pg/mL), decreased monocyte chemotactic protein-3 (cut-off 52.5 pg/mL) and interleukin-15 (cut-off 17.1 pg/mL) significantly increased the risk of disease recurrence (HR = 4.838, 95% CI 2.048-11.427, p < 0.001). Our results suggest a strong impact of the immune tumor microenvironment on BC progression, especially through influencing the dissemination and survival of more aggressive, mesenchymal CTC subtypes.
Keywords: circulating tumor cells; cytokines; primary breast cancer; tumor-infiltrating lymphocytes.