An effective antibacterial system was developed by using clove essential oil Pickering emulsion (CO-PE). The carboxymethyl cellulose sodium modified cellulose nanocrystals (CNC) was used as the stabilizer of CO-PE, which were prepared by environmentally friendly approach of homogenization technology. The factors affecting the formation and stability of CO-PE were studied, such as CNC concentration, homogenization pressure, CO concentration and ionic concentration and pH. And the antibacterial performance of CO-PE against E. coli and S. aureus was investigated by determining the minimal inhibitory concentration (MIC). The results showed that 1% CNC stabilized CO-PE exhibited small droplet size and rough surface, and had good stability at high pH values or salt concentration, owing to the presence of CNC on interface of droplet. And the CNC-stabilized CO-PE exhibited higher antimicrobial activity at equivalent CO concentration, which might be attributed to efficiently adhere to bacterial membrane. Therefore, our research would provide new insights for antibacterial application of Pickering emulsions loading essential oils in the food and other industries.
Keywords: Antibacterial activity; Cellulose nanocrystals; Clove essential oil; Pickering emulsion; Rough surface.
Copyright © 2020 Elsevier B.V. All rights reserved.