A neurophysiological approach to spatial filter selection for adaptive brain-computer interfaces

J Neural Eng. 2021 Mar 1;18(2). doi: 10.1088/1741-2552/abd51f.

Abstract

Objective. The common spatial patterns (CSP) algorithm is an effective method to extract discriminatory features from electroencephalography (EEG) to be used by a brain-computer interface (BCI). However, informed selection of CSP filters typically requires oversight from a BCI expert to accept or reject filters based on the neurophysiological plausibility of their activation patterns. Our goal was to identify, analyze and automatically classify prototypical CSP patterns to enhance the prediction of motor imagery states in a BCI.Approach. A data-driven approach that used four publicly available EEG datasets was adopted. Cluster analysis revealed recurring, visually similar CSP patterns and a convolutional neural network was developed to distinguish between established CSP pattern classes. Furthermore, adaptive spatial filtering schemes that utilize the categorization of CSP patterns were proposed and evaluated.Main results. Classes of common neurophysiologically probable and improbable CSP patterns were established. Analysis of the relationship between these categories of CSP patterns and classification performance revealed discarding neurophysiologically improbable filters can decrease decoder performance. Further analysis revealed that the spatial orientation of EEG modulations can evolve over time, and that the features extracted from the original CSP filters can become inseparable. Importantly, it was shown through a novel adaptive CSP technique that adaptation in response to these emerging patterns can restore feature separability.Significance. These findings highlight the importance of considering and reporting on spatial filter activation patterns in both online and offline studies. They also emphasize to researchers in the field the importance of spatial filter adaptation in BCI decoder design, particularly for online studies with a focus on training users to develop stable and suitable brain patterns.

Keywords: EEG; brain–computer interface; common spatial patterns; sensorimotor rhythms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Brain-Computer Interfaces*
  • Electroencephalography / methods
  • Imagery, Psychotherapy
  • Imagination / physiology
  • Signal Processing, Computer-Assisted