Photooxidation generates reactive oxygen species (ROS) through the interaction of dyes or surfaces with light radiation of appropriate wavelength. The reaction is of wide utility and is highly effective in photodynamic therapy (PDT) of various types of cancer and skin disease. Understanding generation of singlet oxygen has contributed to the development of PDT and its subsequent use in vivo. However, this therapy has some limitations that prevent its use in the treatment of cancers located deep within the body. The limited depth of light penetration through biological tissue limits initiation of PDT action in deep tissue. Measurement of oxygen photo consumption is critical due to tumor hypoxia, and use of magnetic resonance imaging (MRI) is particularly attractive since it is non-invasive. This article presents bioluminescence (BL) and chemiluminescence (CL) phenomena based on publications from the last 20 years, and preliminary results from our lab in the use of MRI to measure oxygen concentration in water. Current work is aimed at improving the effectiveness of singlet oxygen delivery to deep tissue cancer.
Keywords: Bioluminescence; Chemiluminescence; MRI; Photodynamic therapy; Singlet oxygen.
Copyright © 2020 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.