Augmenting T-cell responses to tumors by in situ nanomanufacturing

Mater Horiz. 2020 Nov 1;7(11):3028-3033. doi: 10.1039/d0mh00755b. Epub 2020 Sep 29.

Abstract

Recent innovations in immunoregulatory treatments have demonstrated both the impressive potential and vital role of T cells in fighting cancer. These treatments come at a cost, with systemic side effects including life-threatening autoimmunity and immune dysregulation the norm. Here, we developed an approach to locally synthesize immune therapies and in this way, avoid systemic toxicity. Rather than just encapsulating cytokines, we endowed our nanoparticles with transcriptional and translational machinery to make cytokines locally, in situ, and on demand (activated by light). We demonstrated the capabilities of these particles in vitro and in vivo, in a mouse model of melanoma, and showed that tumor-infiltrating T cells were more highly activated in the context of these "microfactory" particles that make the synthetic cytokine.