Comparing Deep Learning and Immunohistochemistry in Determining the Site of Origin for Well-Differentiated Neuroendocrine Tumors

J Pathol Inform. 2020 Oct 9:11:32. doi: 10.4103/jpi.jpi_37_20. eCollection 2020.

Abstract

Background: Determining the site of origin for metastatic well-differentiated neuroendocrine tumors (WDNETs) is challenging, and immunohistochemical (IHC) profiles do not always lead to a definitive diagnosis. We sought to determine if a deep-learning convolutional neural network (CNN) could improve upon established IHC profiles in predicting the site of origin in a cohort of WDNETs from the common primary sites.

Materials and methods: Hematoxylin and eosin (H&E)-stained tissue microarrays (TMAs) were created using 215 WDNETs arising from the known primary sites. A CNN trained and tested on 60% (n = 130) and 40% (n = 85) of these cases, respectively. One hundred and seventy-nine cases had TMA tissue remaining for the IHC analysis. These cases were stained with IHC markers pPAX8, CDX2, SATB2, and thyroid transcription factor-1 (markers of pancreas/duodenum, ileum/jejunum/duodenum, colorectum/appendix, and lung WDNET sites of origin, respectively). The CNN diagnosis was deemed correct if it designated a majority or plurality of the tumor area as the known site of origin. The IHC diagnosis was deemed correct if the most specific marker for a particular site of origin met an H-score threshold determined by two pathologists.

Results: When all cases were considered, the CNN correctly identified the site of origin at a lower rate compared to IHC (72% vs. 82%, respectively). Of the 85 cases in the CNN test set, 66 had sufficient TMA material for IHC stains, thus 66 cases were available for a direct case-by-case comparison of IHC versus CNN. The CNN correctly identified 70% of these cases, while IHC correctly identified 76%, a finding that was not statistically significant (P = 0.56).

Conclusion: A CNN can identify WDNET site of origin at an accuracy rate close to the current gold standard IHC methods.

Keywords: Artificial Intelligence; convolutional neural network; deep learning; neuroendocrine tumor.