Surface-Based Spatial Pyramid Matching of Cortical Regions for Analysis of Cognitive Performance

Med Image Comput Comput Assist Interv. 2019 Oct:11767:102-110. doi: 10.1007/978-3-030-32251-9_12. Epub 2019 Oct 10.

Abstract

We propose a method to analyze the relationship between the shape of functional regions of the cortex and cognitive measures, such as reading ability and vocabulary knowledge. Functional regions on the cortical surface can vary not only in size and shape but also in topology and position relative to neighboring regions. Standard diffeomorphism-based shape analysis tools do not work well here because diffeomorphisms are unable to capture these topological differences, which include region splitting and merging across subjects. State-of-the-art cortical surface shape analyses compute derived regional properties (scalars), such as regional volume, cortical thickness, curvature, and gyrification index. However, these methods cannot compare the full extent of topological or shape differences in cortical regions. We propose icosahedral spatial pyramid matching (ISPM) of region borders computed on the surface of a sphere to capture this variation in regional topology, position, and shape. We then analyze how this variation corresponds to measures of cognitive performance. We compare our method to other approaches and find that it is indeed informative to consider aspects of shape beyond the standard approaches. Analysis is performed using a subset of 27 test/retest subjects from the Human Connectome Project in order to understand both the effectiveness and reproducibility of this method.