Introduction: While exposure to sulfur mustard (SM) is commonly associated with the production of vesicating dermal, ocular, and respiratory injuries, systemic damage to bone marrow and lymphatic tissue can decrease critical immune cell populations leading to higher susceptibility to life-threatening infection and septicemia. There are currently no approved medical countermeasures for SM-induced myelosuppression. An intravenous SM challenge model was developed in adult rats as a preliminary proof-of-principle platform to evaluate the efficacy of candidate immunostimulants.
Materials and methods: Adult male and female Sprague Dawley rats were exposed to SM through tail vein injection. Toxicity progression was monitored through clinical observations, body weights, body temperatures, hematology, serum clinical chemistry, and flow cytometry of blood and bone marrow samples.
Results: Following SM exposure, overt toxicity progression was characterized by weight loss, changes in body temperature, and manifestation of toxic clinical signs (diarrhea, lethargy, hunched posture, rough hair coat, respiratory distress, and death). Drastic alterations in complete blood cell profiles included an early-onset lymphopenia followed by a delayed-onset neutropenia and thrombocytopenia. Only transient changes in serum clinical chemistry parameters were observed. Flow cytometry analysis of circulating blood revealed that B-cells were more predominantly affected by SM exposure than T-cells. Challenge with SM resulted in loss of hematopoietic and mesenchymal stem cell populations in the bone marrow.
Conclusions: The small animal model developed in this study replicates many key aspects of human SM exposures and should serve as a relevant, rapid, and cost-effective platform to screen candidate medical countermeasures for SM-induced hematologic toxicity.
Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2020. This work is written by (a) US Government employee(s) and is in the public domain in the US.