Prevalence of Multiple Tick-Borne Pathogens in Various Tick Vectors in Northeastern China

Vector Borne Zoonotic Dis. 2021 Mar;21(3):162-171. doi: 10.1089/vbz.2020.2712. Epub 2020 Dec 21.

Abstract

Background: Tick-borne bacteria and protozoa can cause a variety of human and animal diseases in China. It is of great importance to monitor the prevalence and dynamic variation of these pathogens in ticks in ever-changing natural and social environment. Materials and Methods: Ticks were collected from Heilongjiang and Jilin provinces of northeastern China during 2018-2019 followed by morphological identification. The presence of Rickettsia spp., Anaplasma spp., Ehrlichia spp., Borrelia spp., Babesia spp., and Theileria spp. was examined by PCR and Sanger sequencing. The obtained sequences were subjected to phylogenetic analysis through Mega 7.0. Statistical analysis was performed using SPSS 24.0. Results: A total of 250 ticks from 5 species of 3 genera were collected. Ixodes and Haemaphysalis ticks carried more species of pathogens than Dermacentor, and the pathogens detected in Haemaphysalis japonica varied significantly among different sampling sites. The infection rates of Rickettsia spp., Anaplasma spp., Ehrlichia spp., Borrelia spp., Babesia spp., and Theileria spp. were 41.2%, 0, 2.0%, 7.2%, 1.2%, and 7.2%, respectively. Twelve pathogens were identified, among which Rickettsia raoultii (29.6%), Candidatus Rickettsia tarasevichiae (9.2%), and Theileria equi (4.4%) were the three most common ones. Rickettsia had its dominant vector, that is, R. raoultii had high infection rates in Dermacentor nuttalli and Dermacentor silvarum, Ca. R. tarasevichiae in Ixodes persulcatus, and Rickettsia heilongjiangensis in H. japonica. Interestingly, unclassified species were observed, including a Rickettsia sp., an Ehrlichia sp., a Borrelia sp., and a Babesia sp. Coinfections with different pathogens were identified in 9.2% of all tested ticks, with I. persulcatus most likely to be coinfected (23.8%) and Rickettsia spp. and Borrelia spp. as the most common combination (16.7%). Conclusions: The results of this study reflect high diversity and complexity of pathogens in ticks, which are useful for designing more targeted and effective control measures for tick-borne diseases in China.

Keywords: coinfections; northeastern China; tick-borne pathogens; ticks.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • China / epidemiology
  • Ixodes*
  • Phylogeny
  • Prevalence
  • Rickettsia* / genetics
  • Tick-Borne Diseases* / epidemiology
  • Tick-Borne Diseases* / veterinary