Metal heteroanionic materials, such as oxyhalides, are promising photocatalysts in which band positions can be engineered for visible-light absorption by changing the halide identity. Advancing the synthesis of these materials, bismuth oxyhalides of the form BiOX (X = Cl, Br) have been prepared using rapid and scalable ultrasonic spray synthesis (USS). Central to this advance was the identification of small organohalide molecules as halide sources. When these precursors are spatially and temporally confined in the aerosol phase with molten salt fluxes, powders composed of single-crystalline BiOX nanoplates can be produced continuously. A mechanism highlighting the in situ generation of halide ions is proposed. These materials can be used as photocatalysts and provide proof-of-concept toward USS as a route to more complex bismuth oxyhalide materials.