Processing of fear is of crucial importance for human survival and it can generally occur at explicit and implicit conditions. It is worth noting that explicit and implicit fear processing produces different behavioral and neurophysiological outcomes. The present study capitalizes on the Activation Likelihood Estimation (ALE) method of meta-analysis to identify: (a) the "core" network of fear processing in healthy individuals; (b) common and specific neural activations associated with explicit and implicit processing of fear. Following PRISMA guidelines, a total of 92 fMRI and PET studies were included in the meta-analysis. The overall analysis show that the core fear network comprises the amygdala, pulvinar, and fronto-occipital regions. Both implicit and explicit fear processing activated amygdala, declive, fusiform gyrus, and middle frontal gyrus, suggesting that these two types of fear processing share a common neural substrate. Explicit fear processing elicited more activations at the pulvinar and parahippocampal gyrus, suggesting visual attention/orientation and contextual association play important roles during explicit fear processing. In contrast, implicit fear processing elicited more activations at the cerebellum-amygdala-cortical pathway, indicating an 'alarm' system underlying implicit fear processing. These findings have shed light on the neural mechanism underlying fear processing at different levels of awareness.
Keywords: Activation likelihood estimation; Explicit; Fear; Implicit.
Copyright © 2020. Published by Elsevier Inc.