Speech Segregation in Active Middle Ear Stimulation: Masking Release With Changing Fundamental Frequency

Ear Hear. 2021 May/Jun;42(3):709-717. doi: 10.1097/AUD.0000000000000973.

Abstract

Objectives: Temporal fine structure information such as low-frequency sounds including the fundamental frequency (F0) is important to separate different talkers in noisy environments. Speech perception in noise is negatively affected by reduced temporal fine structure resolution in cochlear hearing loss. It has been shown that normal-hearing (NH) people as well as cochlear implant patients with preserved acoustic low-frequency hearing benefit from different F0 between concurrent talkers. Though patients with an active middle ear implant (AMEI) report better sound quality compared with hearing aids, they often struggle when listening in noise. The primary objective was to evaluate whether or not patients with a Vibrant Soundbridge AMEI were able to benefit from F0 differences in a concurrent talker situation and if the effect was comparable to NH individuals.

Design: A total of 13 AMEI listeners and 13 NH individuals were included. A modified variant of the Oldenburg sentence test was used to emulate a concurrent talker scenario. One sentence from the test corpus served as the masker and the remaining sentences as target speech. The F0 of the masker sentence was shifted upward by 4, 8, and 12 semitones. The target and masker sentences were presented simultaneously to the study subjects and the speech reception threshold was assessed by adaptively varying the masker level. To evaluate any impact of the occlusion effect on speech perception, AMEI listeners were tested in two configurations: with a plugged ear-canal contralateral to the implant side, indicated as AMEIcontra, or with both ears plugged, indicated as AMEIboth.

Results: In both study groups, speech perception improved when the F0 difference between target and masker increased. This was significant when the difference was at least 8 semitones; the F0-based release from masking was 3.0 dB in AMEIcontra (p = 0.009) and 2.9 dB in AMEIboth (p = 0.015), compared with 5.6 dB in NH listeners (p < 0.001). A difference of 12 semitones revealed a F0-based release from masking of 3.5 dB in the AMEIcontra (p = 0.002) and 3.4 dB in the AMEIboth (p = 0.003) condition, compared with 5.0 dB in NH individuals (p < 0.001).

Conclusions: Though AMEI users deal with problems resulting from cochlear damage, hearing amplification with the implant enables a masking release based on F0 differences when F0 between a target and masker sentence was at least 8 semitones. Additional occlusion of the ear canal on the implant side did not affect speech performance. The current results complement the knowledge about the benefit of F0 within the acoustic low-frequency hearing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cochlear Implantation*
  • Cochlear Implants*
  • Ear, Middle
  • Humans
  • Perceptual Masking
  • Speech
  • Speech Perception*