Exploration of the natural waxes-tuned crystallization behavior, droplet shape and rheology properties of O/W emulsions

J Colloid Interface Sci. 2021 Apr:587:417-428. doi: 10.1016/j.jcis.2020.12.024. Epub 2020 Dec 13.

Abstract

Lipid crystallization in O/W emulsions is essential to control the release of nutrients and to food structuring. While few information is involved in adjusting and controlling the performance of emulsions by adjusting oil phase crystallization behavior. We herein developed a novel strategy for designing lipid crystallization inside oil droplets by natural waxes to modify the O/W emulsion properties. Natural waxes, the bio-based and sustainable materials, displayed a high efficiency in modifying the crystallization behavior, droplet surface and shape, as well as the overall performance of emulsions. Specifically, waxes induced the formation of a new hydrocarbon chain distances of 3.70 and 4.15 Å and slightly decreased the lamellar distance (d001) of the single crystallites, thus forming the large and rigid crystals in droplets. Interestingly, these large and rigid crystals in droplets tended to penetrate the interface film, forming the crystal bumps on the droplet surface and facilitating non-spherical shape transformation. The presence of rice bran wax (RW) and carnauba wax (CW) induced the droplet shape into ellipsoid and polyhedron shape, respectively. Furthermore, the uneven interface and non-spherical shape transformation promoted the crystalline droplet-droplet interaction, fabricating a three-dimensional network structure in O/W emulsions. Finally, both linear and nonlinear rheology strongly supported that waxes enhanced the crystalline droplet-droplet interaction and strengthened the network in O/W emulsions. Our findings give a clear insight into the effects of adding natural waxes into oil phase on the crystalline and physical behavior of emulsions, which provides a direction for the design and control of emulsion performance.

Keywords: Droplet; Lipid crystallization; Natural waxes; O/W emulsions.